Monochamus alternatus (Hope) is a severe wood‐boring pest in coniferous forests and a major vector of pine wilt disease in East Asia. Harmonic radar is a powerful tool for studying the dispersal behavior of insects and it could be applied to control pine wilt disease. In this study, we validated the application of harmonic radar for analyzing the dispersal behavior of M. alternatus beetles in a field environment. We determined the wing capacities of the beetles and the effects of electronic tagging and marking on their movement, flight ability, survivorship, and food consumption in the laboratory to confirm the suitability of this technique. The detection rate and recovery rate for beetles were analyzed separately using radar on caged pine stands and in the field environment. The results showed that the minimum wing capacity of the Japanese pine sawyer was 24.9 mg, which was seven times the weight of the electronic tag (3.5 mg). Marking and tagging the beetles had no significant adverse effects on their movement, flight capacity, food consumption, and survivorship. The detection rate using the radar system and recovery rate based on visual observations of the beetles in caged pines were both 95.6%. However, in the field environment, the detection and recovery rates were only 55.6% and 37.8% after one week, respectively, and 33.3% and 7.8% after two weeks. Harmonic radar is a promising technique for studying the dispersal behavior of the Japanese pine sawyer, but its performance is not satisfactory and major improvements are required for both the radar system and electronic tags.