This paper proposes a determination method of the cascaded number for lumped parameter models (LPMs) of the transmission lines. The LPM is used to simulate long-distance transmission lines, and the cascaded number significantly impacts the simulation results. Currently, there is a lack of a system-level determination method of the cascaded number for LPMs. Based on the theoretical analysis and eigenvalue decomposition of network matrix, this paper discusses the error in resonance characteristics between distributed parameter model and LPMs. Moreover, it is deduced that optimal cascaded numbers of the cascaded π-type and T-type LPMs are the same, and the Г-type LPM has a lowest analog accuracy. The principle that the maximum simulation frequency is less than the first resonance frequency of each segment is presented. According to the principle, optimal cascaded numbers of cascaded π-type, T-type, and Г-type LPMs are obtained. The effectiveness of the proposed determination method is verified by simulation.