The aim of this systematic review was to evaluate the ability of magnetic resonance elastography (MRE) to identify significant changes in brain mechanical properties during normal and pathological aging. PubMed, Web of Science and Scopus were searched for human studies using MRE to assess brain mechanical properties in cognitively healthy individuals, individuals at risk of dementia or patients diagnosed with dementia. Study characteristics, sample demographics, clinical characterization and main MRE outcomes were summarized in a table. A total of 19 studies (nine aging, 10 dementia), comprising 700 participants, were included. The main findings were decreased cerebral stiffness along aging, with rates of annual change ranging from −0.008 to −0.025 kPa per year. Also, there were regional differences in the age effect on brain stiffness. Concerning demented patients, differential patterns of stiffness were found for distinct dementia subtypes. Alzheimer's disease and frontotemporal dementia exhibited decreased brain stiffness in comparison to cognitively healthy controls and significant declines were found in regions known to be affected by the disease. In normal pressure hydrocephalus, the results were not consistent across studies, and in dementia with Lewy bodies no significant differences in brain stiffness were found. In conclusion, aging is characterized by the softening of brain tissue and this event is even more pronounced in pathological aging, such as dementia. MRE technique could be applied as a sensible diagnostic tool to identify deviations from normal aging and develop new brain biomarkers of cognitive decline/dementia that would help promote healthier cognitive aging.