Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The increasing severity of global climate change has led to more frequent extreme high‐temperature events, significantly damaging rice yield and quality, thus posing a threat to global food security. Research indicates that plant‐microbe interactions can enhance plant growth and overall health under adverse conditions. Therefore, this review aims to explore strategies to improve rice heat tolerance through thermophilic microorganism mediation. This paper systematically summarises the effects of heat stress on both the aboveground and underground parts of rice during its growth stages, identifies the molecular mechanisms by which rice responds to heat stress, and explores the potential roles of microorganisms. Additionally, we review existing studies on microorganisms that alleviate plant heat stress and their mechanisms of action. Through case studies, we explore how microorganisms enhance rice survival in high‐temperature environments by regulating its growth and development, along with their potential applications in sustainable agriculture. In the future, environmentally friendly and efficient microbial inoculants and biofertilizers are expected to be developed based on microbe‐mediated plant heat tolerance mechanisms, which will help mitigate the heat stress challenges crops face under global climate change.
The increasing severity of global climate change has led to more frequent extreme high‐temperature events, significantly damaging rice yield and quality, thus posing a threat to global food security. Research indicates that plant‐microbe interactions can enhance plant growth and overall health under adverse conditions. Therefore, this review aims to explore strategies to improve rice heat tolerance through thermophilic microorganism mediation. This paper systematically summarises the effects of heat stress on both the aboveground and underground parts of rice during its growth stages, identifies the molecular mechanisms by which rice responds to heat stress, and explores the potential roles of microorganisms. Additionally, we review existing studies on microorganisms that alleviate plant heat stress and their mechanisms of action. Through case studies, we explore how microorganisms enhance rice survival in high‐temperature environments by regulating its growth and development, along with their potential applications in sustainable agriculture. In the future, environmentally friendly and efficient microbial inoculants and biofertilizers are expected to be developed based on microbe‐mediated plant heat tolerance mechanisms, which will help mitigate the heat stress challenges crops face under global climate change.
This study investigated the effects of grafting on eggplant growth, yield, and disease resistance, with a focus on microbial dynamics in the rhizosphere. Eggplant scions were grafted onto rootstocks of wild eggplant and tomato, with self-rooted eggplants serving as controls. Greenhouse experiments were conducted over an eight-month growing period, using standard field practices such as film mulching and integrated water–fertilizer management. High-throughput sequencing was used to analyze the biological properties and microbial community of the rhizosphere soil. Results showed that plants grafted onto ‘Huimei Zhenba’ and ‘Torvum’ rootstocks yielded up to 36.89% more than self-rooted controls, achieving yields of 4619.59 kg and 4399.73 kg per 667 m², respectively. The disease incidence of bacterial wilt was reduced to as low as 3.33% in the ‘Huimei Zhenba’ treatment, compared to 55.56% in non-grafted controls. Additionally, grafted plants exhibited increased stem diameter and chlorophyll content, with the TL/HM combination reaching 54.23 ± 3.17 SPAD units. The enhanced microbial biomass of carbon, nitrogen, and phosphorus, particularly in the TL/HM treatment (377.59 mg/kg, 28.31 mg/kg, and 36.30 mg/kg, respectively), supports a more nutrient-rich rhizosphere environment. Moreover, soil enzyme activities, such as β-glucosidase and phosphatase, were significantly higher in grafted plants, enhancing nutrient cycling and potentially increasing resistance to pathogens. Overall, grafted eggplants demonstrated enhanced soil microbial biomass, enzyme activity, and a more diverse microbial community, which are critical factors contributing to the improved yield and disease resistance observed in grafted crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.