Carbon metabolism plays an essential role in bacterial pathogenesis and susceptibility to antibiotics. In Pseudomonas aeruginosa, Crc, Hfq, and a small RNA, CrcZ, are central regulators of carbon metabolism. By screening mutants of genes involved in carbon metabolism, we found that mutation of the tpiA gene reduces the expression of the type III secretion system (T3SS) and bacterial resistance to aminoglycoside antibiotics. TpiA is a triosephosphate isomerase that reversibly converts glyceraldehyde 3-phosphate to dihydroxyacetone phosphate, a key step connecting glucose metabolism with glycerol and phospholipid metabolisms. We found that mutation of the tpiA gene enhances the bacterial carbon metabolism, respiration, and oxidative phosphorylation, which increases the membrane potential and promotes the uptake of aminoglycoside antibiotics. Further studies revealed that the level of CrcZ is increased in the tpiA mutant due to enhanced stability. Mutation of the crcZ gene in the tpiA mutant background restored the expression of the T3SS genes and the bacterial resistance to aminoglycoside antibiotics. Overall, this study reveals an essential role of TpiA in the metabolism, virulence, and antibiotic resistance in P. aeruginosa.
IMPORTANCE The increase in bacterial resistance against antibiotics imposes a severe threat to public health. It is urgent to identify new drug targets and develop novel antimicrobials. Metabolic homeostasis of bacteria plays an essential role in their virulence and resistance to antibiotics. Recent studies demonstrated that antibiotic efficacies can be improved by modulating the bacterial metabolism. Pseudomonas aeruginosa is an important opportunistic human pathogen that causes various infections. The bacterium is intrinsically resistant to antibiotics. In this study, we provide clear evidence that TpiA (triosephosphate isomerase) plays an essential role in the metabolism of P. aeruginosa and influences bacterial virulence and antibiotic resistance. The significance of this work is in identifying a key enzyme in the metabolic network, which will provide clues as to the development of novel treatment strategies against infections caused by P. aeruginosa.