Engineering heterogeneous composite electrodes consisting of multiple active components for meeting various electrochemical and structural demands have proven indispensable for significantly boosting the performance of lithium‐ion batteries (LIBs). Here, a novel design of ZnS/Sn heterostructures with rich phase boundaries concurrently encapsulated into hierarchical interconnected porous nitrogen‐doped carbon frameworks (ZnS/Sn@NPC) working as superior anode for LIBs, is showcased. These ZnS/Sn@NPC heterostructures with abundant heterointerfaces, a unique interconnected porous architecture, as well as a highly conductive N‐doped C matrix can provide plentiful Li+‐storage active sites, facilitate charge transfer, and reinforce the structural stability. Accordingly, the as‐fabricated ZnS/Sn@NPC anode for LIBs has achieved a high reversible capacity (769 mAh g−1, 150 cycles at 0.1 A g−1), high‐rate capability and long cycling stability (600 cycles, 645.3 mAh g−1 at 1 A g−1, 92.3% capacity retention). By integrating in situ/ex situ microscopic and spectroscopic characterizations with theoretical simulations, a multiscale and in‐depth fundamental understanding of underlying reaction mechanisms and origins of enhanced performance of ZnS/Sn@NPC is explicitly elucidated. Furthermore, a full cell assembled with prelithiated ZnS/Sn@NPC anode and LiFePO4 cathode displays superior rate and cycling performance. This work highlights the significance of chemical heterointerface engineering in rationally designing high‐performance electrodes for LIBs.