Recent advances in increasing the spectroscopic energy resolution in scanning tunneling microscopy (STM) have been achieved by integrating electron spin resonance (ESR) with STM. Here, we demonstrate the design and performance of a home-built STM capable of ESR at temperatures ranging from 1 K to 10 K. The STM is incorporated with a home-built Joule-Thomson refrigerator and a 2-axis vector magnet. Our STM design allows for the deposition of atoms and molecules directly into the cold STM, eliminating the need to extract the sample for deposition. In addition, we adopt two methods to apply radio-frequency (RF) voltages to the tunnel junction, the early design of wiring to the STM tip directly, and a more recent idea to use an RF antenna. Direct comparisons of ESR results measured using the two methods and simulations of electric field distribution around the tunnel junction show that, despite their different designs and capacitive couplings to the tunnel junction, there is no discernible difference in the driving and detection of ESR. Furthermore, at a magnetic field of ∼1.6 T, we observe ESR signals (near 40 GHz) sustained up to 10 K, which is the highest temperature for ESR-STM measurement reported to date, to the best of our knowledge. Although the ESR intensity exponentially decreases with increasing temperature, our ESR-STM system with low noise at the tunnel junction allows us to measure weak ESR signals with intensities in the sub-fA range. Our new design of ESR-STM, which is operational in a large frequency and temperature range, can broaden the use of ESR spectroscopy in STM and enable the simple modification of existing STM systems, which will hopefully accelerate a generalized use of ESR-STM.