Multiway join queries incur high-cost I/Os operations over large-scale data. Exploiting sharing join opportunities among multiple multiway joins could be beneficial to reduce query execution time and shuffled intermediate data. Although multiway join optimization has been carried out in MapReduce, different design principles (i.e., in-memory Big Data platforms, Flink) are not considered. To bridge the gap of not considering the optimization of Big Data platforms, an end-to-end multiway join over Flink, which is called Join-MOTH system (J-MOTH), is proposed to exploit sharing data granularity, sharing join granularity, and sharing implicit sorts within multiple join queries. For sharing data, our previous work, Multiquery Optimization using Tuple Size and Histogram (MOTH) system, has been introduced to consider the granularity of sharing data opportunities among multiple queries. For sharing sort, our previous work, Sort-Based Optimizer for Big Data Multiquery (SOOM), has been introduced to consider the implicit sorts among join queries. For sharing join, additional modules have been tailored to the J-MOTH optimizer to optimize sharing work by exploiting shared pipelined multiway join among multiple multiway join queries. The experimental evaluation has demonstrated that the J-MOTH system outperforms the naive and the state-of-the-art techniques by 44% for query execution time using TPC-H queries. Also, the proposed J-MOTH system introduces maximal intermediate data size reduction by 30% in average over Hadoop-like infrastructures.