For each odd prime p, we produce a 2‐generated pro‐p group G whose normal Hausdorff spectra
84.0pthspec⊴S(G)={}prefixhdimGscriptSfalse(Hfalse)∣H⊴normalcG\begin{equation*}\hskip7pc \operatorname{hspec}_{\trianglelefteq }^{\mathcal {S}}(G) = {\left\lbrace \operatorname{hdim}_{G}^{\mathcal {S}}(H)\mid H\trianglelefteq _\mathrm{c} G \right\rbrace}\hskip-7pc \end{equation*}with respect to five standard filtration series S$\mathcal {S}$, namely the lower p‐series, the dimension subgroup series, the p‐power series, the iterated p‐power series and the Frattini series, are all equal to the full unit interval [0,1]. Here hdimGS:{X∣X⊆G}→[0,1]$\operatorname{hdim}_G^{\mathcal {S}} : \lbrace X\mid X \subseteq G \rbrace \rightarrow [0,1]$ denotes the Hausdorff dimension function associated to the natural translation‐invariant metric induced by the filtration series S$\mathcal {S}$.