In precision medicine, especially in the pharmacodynamic area, the lack of an adequate long-term drug effect monitoring model leads to a quite low robustness to the instant drug treatment. Modelling the effect of drug based on the monitoring variables is essential to measure the drug benefit and its side effect preciously. In order to model the complex drug behavior in the context of time series, a sin function is selected to describe the basic trend of heart rate variable that is medically monitored. A Hawkes self-exciting point process model is chosen to describe the effect caused by multiple and sequential drug usage at different time points. The model considers the time lag between the drug given time and the drug effect during the whole drug emission period. A cumulative Gamma distribution is employed to describe the time lag effect. Simulation results demonstrate the established model effectively when describing the baseline trend and the drug effect with low noise levels, where the maximal overlap discrete wavelet transformation is utilized for the information decomposition in the frequency zone. The real data of the variables heart rate and drug liquemin from a medical database is analyzed. Instead of the original time series, scale variable s4 is selected according to the Granger cointegration test. The results show that the model accurately characterizes the cumulative drug effect with the Pearson correlation test value as 0.22, which is more significant for the value under 0.1. In the future, the model can be extended to more complicated scenarios through taking into account multiple monitoring variables and different kinds of drugs.