As a new kind of organic-inorganic hybrid porous material, metal-organic frameworks (MOFs) exhibit a wide application prospect in gas storage and separation, catalysis and sensing due to their characteristics of large specific surface area, high porosity and coordination unsaturation. As more and more types of MOFs were reported, the synthetic strategies of MOFs-based materials have become a hot research topic. According to the morphological dimension, MOFs can be roughly divided into one-dimensional, two-dimensional and three-dimensional structures. Herein, we summarize the synthetic methods and principles of MOFs from multi-dimensional perspectives, and explore the growth mechanism of MOFs with different morphologies based on dynamic and thermodynamic tuning. Finally, based on the above summaries, the challenges and opportunities of MOFs in the future are discussed.