Both alcohol and hepatitis C virus (HCV) infection could induce cellular autophagy in liver cells, which is considered to be essential for productive HCV replication. However, whether alcohol-induced autophagy is involved in the pathogenesis of HCV infection is still poorly understood. Alcohol treatment could induce autophagy in Huh7 cells (a hepatoma cell line that supports HCV JFH-1 replication), evidenced by the increase of LC3B-II levels, the conversion of LC3B-I to LC3B-II, and the formation of GFP-LC3 puncta as well as the decrease of p62 level in alcohol-treated cells compared with control cells. Alcohol treatment also significantly increased PIASy (a member of the PIAS family) expression, which can act as a SUMO (small ubiquitin-like modifier protein) E3 ligase to regulate a broader range of cellular processes including autophagy. Overexpression or the silencing expression of PIASy in alcohol-treated Huh7 cells could increase or decrease autophagic activation caused by alcohol treatment, respectively, and thus affect HCV replication correspondingly. In the absence of alcohol, overexpression or silencing expression of PIASy increase or decrease the level of cellular autophagy, judged by the changes of LC3B-II and p62 levels in the presence or absence of chloroquine (CQ), a lysosome inhibitor. More importantly, in the presence of 3-methyladenine (3-MA), an inhibitor in the early stage of autophagy, the effects of overexpression or silencing expression of PIASy on HCV replication were largely blocked. Furthermore, PIASy could selectively drive the accumulation of SUMO1-conjugated proteins, along with upregulation of the expression of several important autophagy factors, including ATG7 and ATG5–ATG12. In conclusion, alcohol promotes HCV replication through activation of autophagy in Huh7 cells, which partly attributes to its induction of PIASy expression. PIASy-enhanced accumulation of SUMO1-conjugated proteins may contribute to its inducing effect of autophagy. Our findings provide a novel mechanism for the action of alcohol-promoting HCV replication in the context of cellular autophagy.