Liver transplantation (LT) is the only effective method to treat endâstage liver disease. Hepatic ischemiaâreperfusion injury (IRI) continues to limit the prognosis of patients receiving LT. Histone deacetylase 6 (HDAC6) is a unique HDAC member involved in inflammation and apoptosis. However, its role and mechanism in hepatic IRI have not yet been reported. We examined HDAC6 levels in liver tissue from LT patients, mice challenged with liver IRI, and hepatocytes subjected to hypoxia/reoxygenation (H/R). In addition, HDAC6 globalâknockout (HDAC6âKO) mice, adenoâassociated virusâmediated liverâspecific HDAC6 overexpressing (HDAC6âLTG) mice, and their corresponding controls were used to construct hepatic IRI models. Hepatic histology, inflammatory responses, and apoptosis were detected to assess liver injury. The molecular mechanisms of HDAC6 in hepatic IRI were explored in vivo and in vitro. Moreover, the HDAC6âselective inhibitor tubastatin A was used to detect the therapeutic effect of HDAC6 on liver IRI. Together, our results showed that HDAC6 expression was significantly upregulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Compared with control mice, HDAC6 deficiency mitigated liver IRI by inhibiting inflammatory responses and apoptosis, whereas HDAC6âLTG mice displayed the opposite phenotype. Further molecular experiments show that HDAC6 bound to and deacetylated AKT and HDAC6 deficiency improved liver IRI by activating PI3K/AKT/mTOR signaling. In conclusion, HDAC6 is a key mediator of hepatic IRI that functions to promote inflammation and apoptosis via PI3K/AKT/mTOR signaling. Targeting hepatic HDAC6 inhibition may be a promising approach to attenuate liver IRI.