Ultrasound-assisted dispersive liquid-liquid microextraction (UDLLME) and simultaneous derivatization followed by GC-MS was developed for the analysis of four aldehydes including acetaldehyde (ACE), propionaldehyde (PRO), butyraldehyde (BUT) and valeraldehyde (VAL) in water samples. In the proposed method, the aldehydes were derivatized with O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine (PFBHA) and extracted by UDLLME in aqueous solution simultaneously; finally, the derivatives were analyzed by GC-MS. The experimental parameters were investigated and the method validations were studied. The optimal conditions were: aqueous sample of 5 mL, PFBHA of 50 μL, 1.0 mL ethanol (disperser solvent) containing 20 μL chlorobenzene (extraction solvent), ultrasound time of 2 min and centrifuging time of 3 min at 6000 rpm. The proposed method provided satisfactory precision (RSD 1.8-10.2%), wide linear range (0.8-160 μg/L), good linearity (R(2) 0.9983-0.9993), good relative recovery (85-105%) and low limit of detection (0.16-0.23 μg/L). The proposed method was successfully applied for the analysis of aldehydes in water samples. The experimental results showed that the proposed method was a very simple, rapid, low-cost, sensitive and efficient analytical method for the determination of trace amount of aldehydes in water samples.