Increasing population in urban areas drives urban cover expansion and spatial growth. Developing urban growth models enables better understanding and planning of sustainable urban areas. The SLEUTH model is an urban growth simulation model which uses the concept of cellular automata to predict land cover change using six spatial inputs of historical data (slope, land use, exclusion, urban, transportation, and hill-shade). This study investigates the potential of SLEUTH to capture railway-induced urban growth by testing methods that can consider railways as input to the model, namely (1) combining the exclusion layer with a station map; (2) creating a new input layer representing stations in addition to the default six inputs. Districts in Tsukuba, Japan and Gurugram, India which historically showed evidence of urban growth by railway construction are investigated. Results reveal that both proposed methods can capture railway impact on urban growth, while the former algorithm under the right settings may perform better than the latter at finer resolutions. Coarser resolution representation (300-m grid-spacing) eventually reduces the differences in accuracy among the default SLEUTH model and the proposed algorithms.