Mercury is a toxic metal that can exist in multiple chemical species. Humans are commonly exposed to methylmercury and mercury vapor, which is converted to mercuric mercury in the body. Despite years of research, there is a paucity of information on the similarity and differences in the mechanisms of mercury toxicity. The relative toxicity of mercuric chloride (HgCl2) and methylmercury chloride (MeHgCl) in C. elegans was determined using assays that measured growth, feeding, reproduction, and locomotion. The effect of HgCl2 and MeHgCl on the expression of several archetypal stress-response genes was also determined. There was no significant difference between the EC50s of the two mercurials on C. elegans growth. However, MeHgCl was more toxic to C. elegans than HgCl2 when assessing feeding, movement and reproduction, all of which require proper neuromuscular activity. Methylmercury chloride exposure resulted in increased steady-state levels of the stress response genes at lower concentrations than HgCl2. In general, MeHgCl was more toxic to C. elegans than HgCl2, particularly when assaying behaviors that require neuromuscular function.