Offshore oil and gas assets are highly complex structures comprising of several components, designed to have a lifecycle of 20-25 years of working under harsh operational and environmental conditions. These assets, during their operational lifetime, are subjected to various degradation mechanisms such as corrosion, erosion, wear, creep and fatigue cracks. In order to improve economic viability and increase profitability, many operators are looking at extending the lifespan of their assets beyond the original design life, thereby making life extension (LE) an increasingly critical and highly-discussed topic in the offshore oil and gas industry. In order to manage asset aging and meet the LE requirements, offshore oil and gas operators have adopted various approaches such as following maintenance procedures as advised by the original equipment manufacturer (OEM), or using the experience and expertise of engineers and inspectors. However, performing these activities often provides very limited value addition to operators during the LE period of operation. This paper aims to propose a systematic framework to help operators meet LE requirements while optimizing their cost structure. This framework establishes an integration between three individual life assessment modules, namely: condition assessment, remaining useful life (RUL) prediction and LE decision-making. The benefits of the proposed framework are illustrated through a case study involving a three-phase separator system on a platform which was constructed in the mid-1970s in West Africa. The results of this study affirm the effectiveness of this framework in minimizing catastrophic failures during the LE phase of operations, whilst ensuring compliance to regulatory requirements.