Assistive devices can significantly improve caregivers’ ability to help disabled people with their daily activities. Existing assistive devices are not fully capable of safe transfer and are still in their early stages of development. In this research, a body-transfer system is designed and developed to ensure that the posture and body angle of the person in the sagittal plane remains unaltered while transferring from bed to wheelchair and vice versa. Two independently controlled conveyor belts (2-DOF) mounted on the indigenously developed bed are employed to transfer the disabled person using a sliding approach. Additionally, a wheelchair with conveyor belts that are fully automated is used to carry and transfer the user to and from the wheelchair. Furthermore, an integrated control architecture has been developed for safely operating the entire body-transfer system (from an indigenously developed bed and wheelchair). Finally, an experimental assessment of the body-transfer system’s performance has been conducted. The experimental findings demonstrate that the system can transfer up to 120 kg of body weight while the user’s posture remains unaltered in the sagittal plane. Users perceive a reduction in wrist and shoulder pain index using the body-transfer system. The system has great potential for relocating disabled persons safely while reducing the load on caregivers.