Background
To create an appropriate chronic kidney disease (CKD) management program, we developed a predictive model to identify patients in a large administrative claims database with CKD stages 3 or 4 who were at high risk for progression to kidney failure.
Methods
The predictive model was developed and validated utilizing a subset of patients with CKD stages 3 or 4 derived from a large Aetna claims database. The study spanned 36 months, comprised of a 12-month (2015) baseline period and a 24-month (2016–2017) prediction period. All patients were ≥18 years of age and continuously enrolled for 36 months. Multivariate logistic regression was used to develop models. Prediction model performance measures included area under the receiver operating characteristic curve (AUROC), calibration, and gain and lift charts.
Results
Of the 74,114 patients identified as having CKD stages 3 or 4 during the baseline period, 2476 (3.3%) had incident kidney failure during the prediction period. The predictive model included the effect of numerous variables, including age, gender, CKD stage, hypertension (HTN), diabetes mellitus (DM), congestive heart failure, peripheral vascular disease, anemia, hyperkalemia (HK), prospective episode risk group score, and poor adherence to renin-angiotensin-aldosterone system inhibitors. The strongest predictors of progression to kidney failure were CKD stage (4 vs 3), HTN, DM, and HK. The ROC and calibration analyses in the validation sample demonstrated good predictive accuracy (AUROC=0.844) and calibration. The top two prediction deciles identified 70.8% of patients who progressed to kidney failure during the prediction period.
Conclusion
This novel predictive model had good accuracy for identifying, from a large national database, patients with CKD who were at high risk of progressing to kidney failure within 2 years. Early identification using this model could potentially lead to improved health outcomes and reduced healthcare expenditures in this at-risk population.