Abstract:A numerical solution is presented for the effects of chemical reaction, thermal radiation, Soret number, Dufour number and magnetic field on double-diffusion free convection flow along a sphere. The governing boundary-layer equations of the problem are formulated and transformed into non-similar form. The obtained equations are solved numerically by an efficient, iterative, tri-diagonal, implicit finite-difference method. The Roseland approximation is used to describe the radiative heat flux in the energy equation. Representative results for the fluid velocity, temperature and solute concentration profiles as well as the local heat and mass transfer rates for various values of the physical parameters are displayed in both graphical and tabular forms.