Compared with ordinary metal structures, advanced composite materials have the characteristics of high strength, high rigidity, and light weight. The use of composite materials in aircraft structures is currently a hot research topic. This research mainly discusses the optimization design of the composite wing structure of the DF-2 light sports aircraft. This article takes the DF-2 light sports aircraft planned to be produced by the company as the source. Based on its overall design basis, aerodynamic requirements, and the original wing structure design, according to the composite material aircraft structure design theory and method, the aircraft wing structure is carried out. Composite materials are materials with new properties that are composed of two or more materials with different properties at the macroscale by physical and chemical methods. Composite materials can be divided into functional composite materials and structural composite materials according to the nature of the application. Functional composites are materials with special functions, such as conductive composites, ablative materials, and frictional composites. At present, the main research is on structural composite materials, which are composed of two components: matrix material and reinforcing material. The new structural scheme design and structural strength analysis are designed to meet the structural strength requirements of the wing and the lightest weight. In this paper, according to the force transmission characteristics of different structural types of the wing, the characteristics of the load transmission are analyzed, and the shape parameters and load parameters of the wing structure design are used as initial conditions, and the quantitative analysis model of the wing structure is constructed according to the requirements of strength, stiffness, and stability. Through rapid mathematical modeling and analysis of the wing structure, the weight and efficiency of different configurations can be evaluated. Through the quantitative analysis model of the wing, the wing structure type can be quickly determined according to the wing parameters in the preliminary design, which makes the basis for the selection of the wing structure type. After optimization, the weight of the wing structure decreased from 0.966 kg to 0.803 kg, a decrease of 16.87%. The designability of composite materials is one of its major characteristics. By optimizing the layup angle, layup sequence, and dropout area, the performance indicators of the structure are finally improved. This research will promote the further development of the aerospace field.