Because of their adaptability and user-friendliness, internal combustion engines are widely used for a variety of purposes, including the generation of consistent power as well as transportation. As a result, the question of whether or not these engines can make use of bio-oils is an important one today. Bio-oils derived from biomass pyrolysis differ significantly from those derived from petroleum-based fuels and biodiesel. They could, however, be valuable alternatives to fossil fuels in order to attain a carbon–neutral future. Bio-oil obtained from catalytic pyrolysis of
Argemone Mexicana
seed using titanium oxide (TiO
2
) nanoparticles was employed in IC engine to check its suitability as an alternative fuel. Engine performance analysis was conducted at B5, B10, B15, B20, B25, and B30 blend for different parameters such as brake thermal efficiency, exhaust gas temperature, and brake-specific fuel consumption with change in engine load. Emission analysis was also carried out for carbon monoxide, hydrocarbon, nitrogen oxides, and carbon dioxide emissions. It was found that B30 blend resembled best performance and the bio-oil produced from catalytic pyrolysis of
Argemone mexicana
seed can be utilised as a substitute of fossil fuels in IC engine.
Graphical Abstract