The decarbonisation of maritime transport in connection with the European Union and International Maritime Organisation directives is mainly associated with renewable and low-carbon fuel use. For optimisation of energy indicators of ship power plants in operation on renewable and low-carbon fuel, it is rational to use numerical research methods. The purpose of this research is to devise methodological solutions for determining the heat release characteristics, m and φz parameters of Wiebe model that can be applied to mathematical models of diesel engines under operating conditions. Innovative solutions are proposed, which in contrast with the methods used in practice, are not related to experimental registration of combustion cycle parameters. These registration techniques were replaced by the proposed exhaust gas temperature or exhaust manifold surface temperature registration method. The acceptable accuracy of results validates the methodological solutions for solving practical tasks: according to the Wiebe model, the error of determining m and φz compared with experimental data does not exceed 3–4%. The proposed method was implemented by simulating the energy indicators of two diesel engines, car engine 1Z 1.9 TDI (Pe = 66 kW; n = 4000 RPM) and multipurpose 8V396TC4 (Pe = 380–600 kW; n = 1850 RPM), in a single-zone model. The variation in experimental data when the engines operated on both diesel and rapeseed methyl ester (a biodiesel fuel), was approximately 1%. The authors anticipate further development of completed solutions with their direct application to ship power plants in real operating conditions.