The rise in global temperatures and increasing severity of heat waves pose significant threats to soil organisms, disrupting ecological balances in soil communities. Additionally, the implications of environmental pollution are exacerbated in a warmer world, as changes in temperature affect the uptake, transformation and elimination of toxicants, thereby increasing the vulnerability of organisms. Nevertheless, our understanding of such processes remains largely unexplored. The present study examines the impact of high temperatures on the uptake and effects of the fungicide fluazinam on the springtail Folsomia candida (Collembola, Isotomidae). Conducted under non‐optimum but realistic high temperatures, the experiments revealed that increased temperature hampered detoxification processes in F. candida, enhancing the toxic effects of fluazinam. High temperatures and the fungicide exerted synergistic interactions, reducing F. candida's reproduction and increasing adult mortality beyond what would be predicted by simple addition of the heat and chemical effects. These findings highlight the need to reevaluate the current ecological risk assessment and the regulatory framework in response to climate changes. This research enhances our understanding of how global warming affects the toxicokinetics and toxicodynamics (TK‐TD) of chemicals in terrestrial invertebrates. In conclusion, our results suggest that adjustments to regulatory threshold values are necessary to address the impact of a changing climate.