This work concerns with a numerical study on heat transfer by MHD aluminum alloys nanofluid (AA7075-water) flow over a nonlinear wall for extensible compactness of electric field. The steady governing momentum and energy equations are transformed to similarity equations for certain families of the controlling parameters. The transformed equations of momentum and thermal transport are solved by applying Runge-Kutta Fehlberg method with shooting technique. The three classical form of nanoparticle shapes are registered into report, i.e., sphere, cylinder and lamina and the heat transfer by natural convection of AA7075-water was studied. It is observed that the thermal and diffusive boundary layer thickness of AA7075-water is weaker in the presence of electric field, E1 = 0.2 as compared to E1 = 0.0. In the presence of electric field, temperature and concentration of lamina shape AA7075 particles hit a dominant role on AA7075-water nanofluid flow regime.