Internal convection cooling of turbine blades and nozzle guide vanes in jet engines is a method used to prolong the life of those components, which are subjected to very high temperature flows from the engine’s combustion chambers. The cooling is effected by passing cold gas through the internal coolant passages situated in the core of the components, the shape of these passages in many cases being simple duct geometries. Experiments are described in which transient techniques were used in an Internal Flow Facility to measure the flow property variation and heat transfer in various geometries simulating typical internal coolant passages, at conditions representative of those found in engines. Results obtained from the three geometries studied (circular, rectangular, and triangular ducts) are compared with existing experimental data and an integral-approach theoretical prediction. In addition, flow in the circular duct with mass removal representing film cooling mass flow was also studied experimentally, and these results are compared with theoretical predictions.