Heat transport enhancement by rotating bottom endwall in a cylindrical Rayleigh–Bénard convection
Wen Yang,
Pei-Yan Deng,
Jian-Zhao Wu
Abstract:Rotating thermal convection, commonly encountered in natural and industrial environments, is typically influenced by both buoyancy forces and boundary rotation. In this study, we conduct direct numerical simulations to explore the effect of rotating bottom on the flow structure and heat transport of Rayleigh–Bénard convection (RBC) in a cylindrical cavity. This cavity has a radius-to-height ratio of 1 and is filled with an incompressible fluid with a Prandtl number of 0.7. Our results show that the axisymmetri… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.