The disposal of electroplating sludge (ES) is a major challenge for the sustainable development of the electroplating industry. ESs have a significant environmental impact, occupying valuable land resources and incurring high treatment costs, which increases operational expenses for companies. Additionally, the high concentration of hazardous substances in ES poses a serious threat to both the environment and human health. Despite extensive scholarly research on the harmless treatment and resource utilization of ES, current technology and processes are still unable to fully harness its potential. This results in inefficient resource utilization and potential environmental hazards. This article analyzes the physicochemical properties of ES, discusses its ecological hazards, summarizes research progress in its treatment, and elaborates on methods such as solidification/stabilization, heat treatment, wet metallurgy, pyrometallurgy, biotechnology, and material utilization. It provides a comparative summary of different treatment processes while also discussing the challenges and future development directions for technologies aimed at effectively utilizing ES resources. The objective of this text is to provide useful information on how to address the issue of ES treatment and promote sustainable development in the electroplating industry.