Water models with
realistic physical–chemical properties
are essential to study a variety of biomedical processes or engineering
technologies involving molecules or nanomaterials. Atomistic models
of water are constrained by the feasible computational capacity, but
calibrated coarse-grained (CG) ones can go beyond these limits. Here,
we compare three popular atomistic water models with their corresponding
CG model built using finite-size particles such as ellipsoids. Differently
from previous approaches, short-range interactions are accounted for
with the generalized Gay–Berne potential, while electrostatic
and long-range interactions are computed from virtual charges inside
the ellipsoids. Such an approach leads to a quantitative agreement
between the original atomistic models and their CG counterparts. Results
show that a timestep of up to 10 fs can be achieved to integrate the
equations of motion without significant degradation of the physical
observables extracted from the computed trajectories, thus unlocking
a significant acceleration of water-based mesoscopic simulations at
a given accuracy.