The Kneser-Hecke-operator is a linear operator defined on the complex vector space spanned by the equivalence classes of a family of self-dual codes of fixed length. It maps a linear self-dual code C over a finite field to the formal sum of the equivalence classes of those self-dual codes that intersect C in a codimension 1 subspace. The eigenspaces of this self-adjoint linear operator may be described in terms of a coding-theory analogue of the Siegel Φ-operator. MSC: 94B05, 11F60