Cu pillars serve as interconnecting structures for 3D chip stacking in heterogeneous integration, whose height uniformity directly impacts chip yield. Compared to typical methods such as white-light interferometry and confocal microscopy for measuring Cu pillars, microscopic fringe projection profilometry (MFPP) offers obvious advantages in throughput, which has great application value in on-line bump height measurement in wafer-level packages. However, Cu pillars with large curvature and smooth surfaces pose challenges for signal detection. To enable the MFPP system to measure both the top region of the Cu pillar and the substrate, which are necessary for bump height measurement, we utilized rigorous surface scattering theory to solve the bidirectional reflective distribution function of the Cu pillar surface. Subsequently, leveraging the scattering distribution properties, we propose a hybrid bright-dark-field MFPP system concept capable of detecting weakly scattered signals from the top of the Cu pillar and reflected signals from the substrate. Experimental results demonstrate that the proposed MFPP system can measure the height of Cu pillars with an effective field of view of 15.2 mm × 8.9 mm and a maximum measurement error of less than 0.65 μm.