Let normalΓ be the hyperbola {false(x,yfalse)∈double-struckR2:xy=1} and Λβ be the lattice‐cross defined by normalΛβ=false(double-struckZ×{0}false)∪false({0}×βdouble-struckZfalse) in R2, where β is a positive real. A result of Hedenmalm and Montes‐Rodríguez says that (Γ,normalΛβ) is a Heisenberg uniqueness pair if and only if β⩽1. In this paper, we show that for a rational perturbation of Λβ, namely
normalΛβθ=false(double-struckZ+false{θfalse}false)×false{0false}∪false{0false}×βdouble-struckZ,where θ=1/p,forsomep∈N and β is a positive real, the pair (Γ,normalΛβθ) is a Heisenberg uniqueness pair if and only if β⩽p.