<div>
<div>
<div>
<p>This work presents the first implementation of the full optical rotation (OR) tensor
at coupled cluster with single and double excitations (CCSD) level in the modified
velocity gauge (MVG) formalism. The CCSD-MVG OR tensor is origin independent,
such that each tensor element could be in principle compared with experimental measurements on oriented systems. However, such measurements are not available for
the small/medium size molecules that can be treated at CCSD level. Therefore,
we compare the CCSD results with those from two density functionals, B3LYP and
CAM-B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components
and for the trace (which is related to the isotropic OR), by 10-20% with CAM-B3LYP
and 20-30% with B3LYP. The data show that the contribution of the electric dipole-
magnetic dipole polarizability tensor to the OR tensor is on average twice as large as
that of the electric dipole-electric quadrupole polarizability tensor. The difficult case
of (1S,4S)-(–)-norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of
CAM-B3LYP with CCSD to the ability of this functional to better reproduce electron
delocalization compared with B3LYP, consistently with previous reports on isotropic
OR. The CCSD-MVG approach allows the computation of reference data of the full
OR tensor, which may be used to test more computationally efficient approximate
methods that can be employed to study realistic models of optically active materials.
</p>
</div>
</div>
</div>