Abstract:We model and demonstrate a simple mode selective all-fiber coupler capable of exciting specific higher order modes in two-and few-mode fibres with high efficiency and purity. The coupler is based on inter-modally phase-matching the propagation constants in each arm of the asymmetric fused coupler, formed by dissimilar fibres. At a specific coupler diameter, the launched fundamental LP 01 mode is coupled into the higher order mode (LP 11 , LP 21 , LP 02 ) in the other arm, over a broadband wavelength range around 1550 nm. Unlike other techniques, the demonstrated coupler is composed of a multimode fiber that is weakly fused with a phase matched conventional single mode telecom fiber (SMF-28). The beating between the supermodes at the coupler waist produces a periodic power transfer between the two arms, and therefore, by monitoring the beating while tapering, it is possible to obtain optimum selection for the desired mode. High coupling efficiencies in excess of 90% for all the higher order modes were recorded over 100 nm spectral range, while insertion losses remain as low as 0.5 dB. Coupling efficiency can be further enhanced by performing slow tapering at high temperature, in order to precisely control the coupler cross-section geometry.