ABSTRACT:Drug-induced hepatotoxicity is an important cause for disapproval, limitations of use, or withdrawal of drugs, and there is a high need for reproducible in vitro systems that can predict such toxicity. In this study, we show that confluent growth of the human hepatoma cell line Huh7 up to 5 weeks results in increased gene expression of several cytochromes P450 (P450s), UDP-glucuronosyltransferases, transporters, transcription factors, and several liver-specific genes, as measured by low-density array. The most striking effect was seen for CYP3A4 expression. Western blot analysis revealed increased amounts of CYP3A4 together with increased levels of NADPH-P450 reductase, cytochrome b 5 , and albumin with prolonged time of confluence. By using the CYP3A4-specific substrates luciferin 6 benzyl ether, testosterone, and midazolam, we could confirm that the increased CYP3A4 gene expression also was accompanied by a similar increase in catalytic activity, inhibitable by the CYP3A4-selective inhibitor ketoconazole. The CYP3A4 activity in confluent cells was also inducible by rifampicin. Finally, the cell system could support the CYP3A4-dependent hepatotoxic activation of aflatoxin B 1 , which was effectively inhibited by ketoconazole. Our results show that Huh7 cells grown confluent differentiate into a more metabolically competent cell line, especially with regard to CYP3A4.