This paper addresses the Direct Displacement-Based Design (DDBD) approach of multi-story RC frame structures consistent with changes to design criteria between Turkish earthquake codes of TSC-2007 and TBEC-2018. The corresponding response modification factor (R) of structures designed based on the DDBD approach is also estimated in this research. The design base shear forces of both codes are compared considering different R factors and also with that of the DDBD approach. The results showed that the DDBD approach, as per TBEC-2018, provides RC frame structures with higher R values compared to the similar approach in accordance with TSC-2007. The Endurance Time (ET) method is a time history-based procedure for seismic assessment of structures under intensifying dynamic excitations aided to judge their performance at various intensity levels. Since, up to now, the ET method has not been considered to evaluate the performance of the structures designed by the DDBD approach, this paper addresses this issue. The ET performance curves of RC frames show that structures designed by the DDBD approach in accordance with TBEC-2018 exhibit higher Interstory Drift Ratios (IDRs) values than TSC-2007 at various hazard levels.