Source separated toilet water is a valuable resource for energy and fertilizers as it has a high concentration of organics and nutrients, which can be reused in agriculture. Recovery of nutrients such as nitrogen, phosphorous, and potassium (NPK) decreases the dependency on energy-intensive processes or processes that rely on depleting natural resources. In new sanitation systems, concentrated black water (BW) is obtained by source-separated collection of toilet water. BW-derived products are often associated with safety issues, amongst which pathogens and antibiotic-resistant pathogens. This study presents results showing that thermophilic (55–60 °C) and hyperthermophilic (70 °C) anaerobic treatments had higher (antibiotic-resistant) culturable pathogen indicators removal than mesophilic anaerobic treatment. Hyperthermophilic and thermophilic anaerobic treatment successfully removed Escherichia coli and extended-spectrum β-lactamases producing E. coli from source-separated vacuum collected BW at retention times of 6–11 days and reached significantly higher removal rates than mesophilic (35 °C) anaerobic treatment (p < 0.05). The difference between thermophilic and hyperthermophilic treatment was insignificant, which justifies operation at 55 °C rather than 70 °C. This study is the first to quantify (antibiotic-resistant) E. coli in concentrated BW (10–40 gCOD/L) and to show that both thermophilic and hyperthermophilic anaerobic treatment can adequately remove these pathogen indicators.