Ionizing irradiation is widely used as conditioning therapy in bone marrow (BM) transplantation. High-dose radiation treatment induces profound tissue damage, especially, of hematopoietic stem cells and progenitor cells. Efforts to improve clinical outcomes post-irradiation are focused on the hematopoietic stem cell niche. Mesenchymal stromal cells (MSCs) represent an integrative part of the BM stromal microenvironment. When co-transplanted with HSC, MSCs augment hematopoietic recovery after chemo-or radiotherapy. The aim of our study was to evaluate essential biological parameters of MSCs, with respect to their lineage-specific differentiation capacity, in vivo survival rates, as well as their ability to rescue lethally irradiated hosts. Materials and Methods. In vitro differentiation of human BM-derived MSCs (hMSCs) for hematopoietic (HSC) and endothelial cells (EC) was studied by reverse transcription-quantitative PCR (RT-qPCR) of lineage-specific surface markers and other proteins. To test in vivo ability of murine MSCs to rescue lethally irradiated (9.5 Gy) mice, the animals were transplanted with eGFP-marked murine MSCs (mMSCs). Long-term donor chimerism was assessed in blood, BM and thymus using CD45.2 and Y chromosome markers. A microarray analysis of bone marrow cells from MSC-transplanted animals was also performed, in order to compare their gene expression profiles to appropriate controls.
ResultsUpon in vitro differentiation of hMSCs, the hematopoietically differentiated cells changed their gene expression towards a typical profile of progenitor and mature hematopoietic cells. A variety of transcription factors responsible for erythropoiesis, megakaryopoiesis, lympho-and myelopoiesis were up-regulated during differentiation in serum-containing media. A population of cells with small round or polymorphic nuclei was detected which expressed hematopoietic progenitor and mature antigen markers, albeit to a rather low degree. The same cells were able to acquire endothelial morphology and expressed endothelial genes upon cultivation with endothelial promoting factors. Following MSCs transplantation, the lethally irradiated mice showed normal hematopoietic recovery comparable to effects of HSC infusions. Seven months later, the recipients had normal distribution of peripheral blood cell populations. No evidence of donor chimerism was shown at any time CTT JOURNAL | VOLUME 5 | NUMBER 2 | JUNE 2016 51 EXPERIMENTAL STUDIES point posttransplant. The distribution kinetics of eGFP+ donor cells after i.v. transplantation identified fast disappearance from peripheral blood, reaching ca. 2% donor mMSC in peripheral blood after 8 hours and significant entrapment in lungs, however, without long-term persistence and embolization events. The microarray expression trial in BM cells from MSC-treated animals has shown upregulation of the genes which are beneficial to BM reconstitution, whereas the genes with supposed radiation-related BM deterioration were downregulated. Injection of MSC-derived microvesicles to le...