Infantile malignant osteopetrosis (IMO) is caused by lack of functional osteoclasts leading to skeletal abnormalities, blindness owing to compression of the optic nerves, bone marrow (BM) failure, and early death. In most patients, TCIRG1, a proton pump subunit essential for bone resorption, is mutated. oc/oc mice represent a model for IMO owing to a deletion in Tcirg1 and die around 4 weeks of age. To determine if hematopoietic stem cell transplantation without prior conditioning can reverse osteopetrosis, neonatal mice were transplanted intravenously with lineage-depleted BM cells. More than 85% of oc/oc mice transplanted with 5 Â 10 6 cells survived long term with an engraftment of 3% to 5% in peripheral blood (PB). At 3 weeks, engraftment in the BM was 1% to 2%, but the cellularity had increased 60-fold compared with untreated oc/oc mice, and RANKL and macrophage colony-stimulating factor (M-CSF) expression in the BM was normalized. Histopathology and micro-computed tomography revealed almost complete reversal of osteopetrosis after 4 weeks. In vitro studies showed that bone resorption by osteoclasts from transplanted oc/oc mice was 14% of transplanted controls, and immunofluorescence microscopy revealed that resorption was mainly associated with osteoclasts of donor origin. Lineage analysis of BM, PB, and spleen did not provide any evidence for selective recruitment of cells to the osteoclastic lineage. The vision also was preserved in transplanted oc/oc mice, as determined by a visual tracking drum test. In summary, nonablative neonatal transplantation leading to engraftment of only a small fraction of normal cells rapidly reverses severe osteopetrosis in the oc/oc mouse model. ß