Abstract. The aim of the present study was to explore the regulatory mechanism of heme oxygenase-1 (HO-1) expression induced by sevoflurane (Sevo) in lipopolysaccharide (LPS)-induced acute lung injury (ALI). Sprague-Dawley rats were divided randomly into six groups: (A) Control, (B) 2.4% Sevo only, (C) LY294002 (PI3K inhibitor) only, (D) LPS + 2.4% Sevo, (E) LY294002 + LPS + 2.4% Sevo and (F) LPS only. The pathological changes in wet/dry weight ratio (W/D), the activities of superoxide dismutase, myeloperoxidase (MPO), malondialdehyde, and HO-1, as well as the expression of intercellular adhesion molecule (ICAM-1), HO-1, phospho-phosphatidylinositol 3-kinase (pPI3K) and phospho-Akt (pAkt) were recorded. Sevo post-conditioning was able to effectively protect from ALI with decreasing pathomorphological scores, MPO activity, W/D and the mRNA and protein expression levels of ICAM-1. Sevo promotes HO-1 expression via the PI3K/protein kinase B (PI3K/Akt) pathway with activation of pPI3K and pAkt. Inhibition of the PI3K/Akt pathway by LY294002 partly eliminates the protective effects of Sevo. It is concluded that Sevo post-conditioning has a vital role in inducing the upregulation of HO-1 expression via the PI3K/Akt pathway to alleviate ALI.