A common clinical condition, acute kidney injury (AKI) significantly influences morbidity and mortality, particularly in critically ill patients. The pathophysiology of AKI is complex and involves multiple pathways including inflammation, autophagy, cell cycle progression, and oxidative stress. Recent evidence suggests that a single insult to the kidney significantly enhances the propensity to develop chronic kidney disease. Therefore, generation of effective therapies against AKI are timely. In this context, the cytoprotective effects of heme oxygenase 1 (HO-1) in animal models of AKI are well documented. HO-1 modulates oxidative stress, autophagy, and inflammation, and regulates the progression of cell cycle via direct and indirect mechanisms. These beneficial effects of HO-1 induction during AKI are, in part, mediated by the by-products of the HO reaction (iron, carbon monoxide, and bile pigments). This review highlights the recent advances in the molecular mechanisms of HO-1–mediated cytoprotection and discusses the translational potential of HO-1 induction in AKI.