Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The objective of this study was to examine the difference in sensory-motor impairments (i.e., balance, contracture, coordination, strength, spasticity, and sensation) between legs in children with hemiplegic cerebral palsy. An observational study measured both lower limbs of children with hemiplegic cerebral palsy over one session. Six sensory-motor impairments (balance, coordination, strength, spasticity, contracture, and proprioception) were measured. The between-leg differences were analyzed using the paired t-tests and presented as the mean differences (95% confidence interval (CI)). Twenty-four participants aged 10.3 years (standard deviation: 1.3) participated. The affected leg was less than the less-affected leg in terms of the strength of dorsiflexors (mean difference (MD) -2.8 Nm, 95% CI −4.2 to −1.4), plantarflexors (MD -2.6 Nm, 95% CI −4.1 to −1.0), knee extensors (MD -5.3 Nm, 95% CI −10.2 to −0.5) as well as range of ankle dorsiflexion (MD -8 deg, 95% CI −13 to −3), and balance (median difference -11.1, 95% CI −11.6 to −10.6). There was a trend toward a difference in terms of the strength of hip abductors (MD -2.6 Nm, 95% CI −5.3 to 0.1) and coordination (MD -0.20 taps/s, 95% CI −0.42 to 0.01). The legs were similar in terms of the strength of hip extensors (MD 0.3 Nm, 95% CI -4.7 to 5.3), proprioception (MD 1 deg, 95% CI 0 to 2), and spasticity (median difference 0, 95% CI 0 to 0). Examination of the difference in sensory-motor impairments between legs in children with hemiplegic cerebral palsy has given us some insights into the deficits in both legs. Not only was balance, strength, and coordination decreased compared with the less-affected leg but also the less-affected leg was markedly decreased compared with typically developing children. Therefore, an intervention aimed at increasing muscle strength and coordination in both legs might have a positive effect, particularly on more challenging physical activities. This may, in turn, lead to successful participation in mainstream sport and recreation.
The objective of this study was to examine the difference in sensory-motor impairments (i.e., balance, contracture, coordination, strength, spasticity, and sensation) between legs in children with hemiplegic cerebral palsy. An observational study measured both lower limbs of children with hemiplegic cerebral palsy over one session. Six sensory-motor impairments (balance, coordination, strength, spasticity, contracture, and proprioception) were measured. The between-leg differences were analyzed using the paired t-tests and presented as the mean differences (95% confidence interval (CI)). Twenty-four participants aged 10.3 years (standard deviation: 1.3) participated. The affected leg was less than the less-affected leg in terms of the strength of dorsiflexors (mean difference (MD) -2.8 Nm, 95% CI −4.2 to −1.4), plantarflexors (MD -2.6 Nm, 95% CI −4.1 to −1.0), knee extensors (MD -5.3 Nm, 95% CI −10.2 to −0.5) as well as range of ankle dorsiflexion (MD -8 deg, 95% CI −13 to −3), and balance (median difference -11.1, 95% CI −11.6 to −10.6). There was a trend toward a difference in terms of the strength of hip abductors (MD -2.6 Nm, 95% CI −5.3 to 0.1) and coordination (MD -0.20 taps/s, 95% CI −0.42 to 0.01). The legs were similar in terms of the strength of hip extensors (MD 0.3 Nm, 95% CI -4.7 to 5.3), proprioception (MD 1 deg, 95% CI 0 to 2), and spasticity (median difference 0, 95% CI 0 to 0). Examination of the difference in sensory-motor impairments between legs in children with hemiplegic cerebral palsy has given us some insights into the deficits in both legs. Not only was balance, strength, and coordination decreased compared with the less-affected leg but also the less-affected leg was markedly decreased compared with typically developing children. Therefore, an intervention aimed at increasing muscle strength and coordination in both legs might have a positive effect, particularly on more challenging physical activities. This may, in turn, lead to successful participation in mainstream sport and recreation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.