Attention can be allocated to mental representations to select information from working memory. to date, it remains ambiguous whether such retroactive shifts of attention involve the inhibition of irrelevant information or the prioritization of relevant information. investigating asymmetries in posterior alpha-band oscillations during an auditory retroactive cueing task, we aimed at differentiating those mechanisms. Participants were cued to attend two out of three sounds in an upcoming sound array. importantly, the resulting working memory representation contained one laterally and one centrally presented item. A centrally presented retro-cue then indicated the lateral, the central, or both items as further relevant for the task (comparing the cued item(s) to a memory probe). time-frequency analysis revealed opposing patterns of alpha lateralization depending on target eccentricity: A contralateral decrease in alpha power in target lateral trials indicated the involvement of target prioritization. A contralateral increase in alpha power when the central item remained relevant (distractor lateral trials) suggested the de-prioritization of irrelevant information. no lateralization was observed when both items remained relevant, supporting the notion that auditory alpha lateralization is restricted to situations in which spatial information is task-relevant. Altogether, the data demonstrate that retroactive attentional deployment involves excitatory and inhibitory control mechanisms. In everyday life, we frequently rely on selective attention in order to focus on information that is relevant while ignoring behaviorally irrelevant sensory input. Without such an attentional filter, we would be overwhelmed by the sheer abundance of sensory information. Analogously, selective attention can operate on working memory contents that are no longer physically present in the environment. Such retroactive shifts of attention are critical in order to adapt to changing task demands and allow for an efficient allocation of limited mental storage resources. The deployment of covert spatial attention to one side in mnemonic (or perceptual) space has been linked to spatially-specific modulations of alpha oscillations 1-3. Typically, there is a relative decrease in alpha power over posterior scalp sites contralateral to the attended location, while alpha power increases contralateral to the unattended location. Based on the gating-by-inhibition framework by Jensen and Mazaheri 4 , low alpha power has been proposed to reflect a state of high excitability in the respective neural areas, whereas high alpha power reflects the functional inhibition of task-irrelevant regions. Analogously, two mechanisms could underlie the selection of information from working memory: shifting attention within working memory may either facilitate or strengthen the relevant information, or, on the other hand, the no longer relevant contents may be inhibited and thereby dropped from the focus of attention within working memory. Although many studies investig...