Western corn rootworm, Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), is the most serious economic pest of maize, Zea mays (L.) (Poales: Poaceae), in the U.S. Corn Belt and also threatens production in Europe. Traditional management options have repeatedly failed over time as western corn rootworm rapidly develops resistance to insecticides, transgenic maize and even crop rotation. Traits that improve host plant resistance and tolerance are highly sought after by plant breeders for crop protection and pest management. However, maize resistance to western corn rootworm appears to be highly complex and despite over 75 yr of breeding efforts, there are no naturally resistant hybrids available commercially. Using phenotypic data from field and greenhouse experiments on a highly diverse collection of 282 inbred lines, we screened and genetically mapped western corn rootworm-related traits to identify genetic loci which may be useful for future breeding or genetic engineering efforts. Our results confirmed that western corn rootworm resistance is complex with relatively low heritability due in part to strong genotype by environment impacts and the inherent difficulties of phenotyping below ground root traits. The results of the Genome Wide Associated Study identified 29 loci that are potentially associated with resistance to western corn rootworm. Of these loci, 16 overlap with those found in previous transcription or mapping studies indicating a higher likelihood they are truly involved in maize western corn rootworm resistance. Taken together with previous studies, these results indicate that breeding for natural western corn rootworm resistance will likely require the stacking of multiple small effect loci.