SUMMARY. MicroangiogTaphy, using methylene blue injected at eight vitelline vein sites, was performed on 156 developing chick embryos at Hamburger-Hamilton stages 14-22. Two stream patterns were observed. Type A coursed sequentially through the dorsal portion of the sinus venosus, the cranial segments of the primitive atrium and atrioventricular canal, the ventral parts of the primitive ventricle and conus cordis, and, finally, the left branchial arches. Type B coursed through the ventral portion of the sinus venosus, the caudal segments of the primitive atrium and atrioventricular canal, the dorsal parts of the primitive ventricle and conus cordis, and, finally, the right branchial arches. Both streams flowed in parallel fashion in the conus cordis. At Hamburger-Hamilton stages 17-18, the dye stream from the right lateral vitelline vein was chiefly type A, whereas that from the left lateral vitelline vein was type B. At Hamburger-Hamilton stages 19-22, those patterns reversed, i.e., the right lateral vitelline vein stream ran as type B, whereas the left lateral vitelline vein stream assumed type A pattern. The cranial-caudal relationship of the two streams at the primitive atrium and atrioventricular canal is not consistent with the hypothesis that these streams separately expand the future right atrium and left atnum. Their parallel direction at the conus cordis does not support the theory that spiral septation is initiated by two spiral streams. The longitudinal separation of the two streams at and beyond the branchial arches also argues against aortico-pulmonary septation as a consequence of flow streaming. Our observations do not support the traditional flow-molding theory. (Circ Res 53: 363-371, 1983) IT IS a traditional view that spiral streams of blood mold the primary heart tube during its development, and play a major role in the formation of the ventricular, bulbar, and aortico-pulmonary septa