A sizing formulation, containing compatible and incompatible silane coupling agents with epoxy resin in conjunction with nanoscale colloidal silica, was used to modify the surface of glass fabric. The modified glass fabric/epoxy resin composite panels were fabricated and characterised by flexural test, Charpy impact test and scanning electron microscope (SEM). By combining nano silica with silane blend in the fabric sizing, more energy was consumed under bending and impacting, which resulted in an improvement of the toughness in composites. The flexural strength, bending stain and Charpy impact strength of the epoxy composite/glass fabric treated with 1 wt-% nano silica and silane blend were ∼42, ∼22 and 35%, respectively, higher than those of silane blend coated glass fabric-reinforced composites (without nano silica). Furthermore, the change of the brittle fracture of the composite into ductile fracture was investigated by SEM micrographs. A possible toughening mechanism was also proposed.