Henry's law constants and infinite dilution activity coefficients of propane, propene, butane, 2-methylpropane, 1-butene, 2-methylpropene, trans-2-butene, cis-2-butene, 1,3-butadiene, dimethylether, chloroethane, 1,1difluoroethane, and hexane in tetrahydropyran in the temperature range of (250 to 330) K were measured by a gas stripping method, and partial molar excess enthalpies and entropies were evaluated from the activity coefficients. A rigorous formula for evaluating the Henry's law constants from the gas stripping measurements was used for these highly volatile mixtures. The estimated uncertainties are about 2 % for the Henry's law constants and 3 % for the infinite dilution activity coefficients. The Henry's law constants followed the order of the increasing Henry's law constant with decreases in the normal boiling point temperature of the solutes except for polar solutes. The partial molar excess entropies and enthalpies of the solutes at infinite dilution in tetrahydropyran are smaller than those in benzene. These excess properties of unsaturated hydrocarbons in tetrahydropyran are smaller than those of saturated hydrocarbons.