Proteins with affinities for specific glycosaminoglycans (GAG's) were used as probes for testing the potential of cell surface GAG's to mediate cell adhesive responses to extracellular matrices (ECM). Plasma fibronectin (FN) and proteins that bind hyaluronate (cartilage proteoglycan core and link proteins) or heparan sulfate (platelet factor 4 [PF4]) were adsorbed to inert substrata to evaluate attachment and spreading of several 3T3 cell lines. Cells failed to attach to hyaluronate-binding substrata. The rates of attachment on PF4 were identical to those on FN; however, PF4 stimulated formation of broad convex lamellae but not tapered cell processes fibers during the spreading response. PF4-mediated responses were blocked by treating the PF4-adsorbed substratum with heparin (but not chondroitin sulfate), or alternatively the cells with Flavobacter heparinum heparinase (but not chondroitinase ABC). Heparinase treatment did not inhibit cell attachment to FN but did inhibit spreading. Cells spread on PF4 or FN contained similar Ca2+-independent cell-substratum adhesions, as revealed by EGTA-mediated retraction of their substratum-bound processes. Microtubular networks reorganized in cells on PF4 but failed to extend into the broadly spread lamellae, where fine microfilament bundles had developed. Stress fibers, common on FN, failed to develop on PF4. These experiments indicate that (a) heparan sulfate proteoglycans are critical mediators of cell adhesion and heparan sulfate-dependent adhesion via PF4 is comparable in some, but not all, ways to FN-mediated adhesion, (b) the uncharacterized and heparan sulfate-independent "cell surface" receptor for FN permits some but not all aspects of adhesion, and (c) physiologically compatible and complete adhesion of fibroblasts requires binding of extracellular matrix FN to both the unidentified "cell surface" receptor and heparan sulfate proteoglycans.Fibronectin is an extracellular matrix-associated glycoprotein found in vivo that mediates fibroblast attachment, spreading, motility, and longterm survival in vitro when adsorbed to tissue culture substrata. Fibronectin consists of dimeric subunits (54) and has the potential to interact with several cell surfaceassociated macromolecules including collagen (l 3), certain glycosaminoglycans (24, 56), and possibly gangliosides (21), and another unidentified cell surface receptor (37,43,45,56). Accumulating evidence indicates that cell surface glycosaminoglycans and proteoglycans mediate fibroblast attachment and possibly more complex adhesive responses on fibronectincontaining extracellular matrices (10, 41,47). Hyaluronic acid and heparan sulfate are two particular classes of cell surface glycosaminoglycan that have received considerable attention as potential determinants of the state of cellular adhesiveness and motility in numerous experimental systems (2, I l, 25, 34, 44). It has yet to be determined, however, if direct interactions between cell surface glycosaminoglycans and the extracellular matrix determine prop...