Background
In the first weeks after liver transplantation about 30% of the patients develop a posttransplant encephalopathy. A posttransplant encephalopathy comprises metabolic-toxic caused symptoms such as disorientation, confusion, hallucinations, cognitive dysfunction and seizures. We hypothesize that alterations of cerebral metabolites before liver transplantation predispose posttransplant encephalopathy development after liver transplantation.
Methods
31 patients with chronic liver disease underwent magnetic resonance spectroscopy (MRS) before liver transplantation to assess glutamine/glutamate (Glx), myo-Inositol (mI), choline (Cho), creatine/phosphocreatine- and N-acetyl-aspartate/N-acetyl-aspartate-glutamate concentrations in the thalamus, lentiform nucleus and white matter. Of these, 14 patients underwent MRS additionally after liver transplantation. Furthermore, 15 patients received MRS only after liver transplantation. Patients’ data were compared to 20 healthy age adjusted controls.
Results
Patients showed significantly increased Glx and decreased mI and Cho concentrations compared to controls before liver transplantation (p≤0.01). The MRS values before liver transplantation of patients with posttransplant encephalopathy showed no significant difference compared to patients without posttransplant encephalopathy. Patients after liver transplantation showed increased Glx concentrations (p≤0.01) compared to controls, however, patients with and without posttransplant encephalopathy did not differ. Patients with posttransplant encephalopathy who underwent MRS before and after liver transplantation showed a significant mI increase in all three brain regions (p<0.04) and Glx decrease in the lentiform nucleus after liver transplantation (p = 0.04) while patients without posttransplant encephalopathy only showed a mI increase in the thalamus (p = 0.04).
Conclusion
Patients with and without posttransplant encephalopathy showed no significant difference in cerebral metabolites before liver transplantation. However, the paired sub-analysis indicates that the extent of cerebral metabolite alterations in patients with liver cirrhosis might be critical for the development of posttransplant encephalopathy after liver transplantation.