The gene for hepatitis B virus X protein (HBx) comprises the smallest open reading frame in the HBV genome, and the protein product can activate various cell signaling pathways and regulate apoptosis, among other effects. However, in different cell types and under different external conditions, its mechanism of action differs. In the present study, the effect of HBx on the viability and apoptosis of mouse podocyte clone 5 (MPC5) cells was investigated. The cells were transfected with the HBx gene using pEX plasmid, and real-time quantitative PCR and western blot analysis were used to test the transfection efficiency and assess related protein expression. The highest expression of HBx occurred at 48 h after MPC5 cells were transfected with HBx. The expression of nephrin protein in the HBx transfection group was lower than that in blank and negative control groups. Following transfection of the HBx gene, podocyte viability was suppressed, while the rate of cell apoptosis was increased; moreover, the expression of signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 was increased compared with in the control groups. The present study suggests that STAT3 activation may be involved in the pathogenic mechanism of renal injuries caused by HBV injection. Thus STAT3 is a potential molecular target in the treatment of HBV-GN.